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Abstract

This document describes the status and usage of the D� �xed cone jet algorithm.

The note begins with a status report on cone algorithms as used by D� for QCD

comparisons. The second section describes how the phenomenological parameter Rsep

was determined from experimental data. Rsep is the maximum distance divided by

the �xed jet cone size allowed between two partons. If the parton distance is less

than Rsep, jets are merged using the Snowmass jet algorithm. Rsep was determined by

overlaying two experimental jets and determining the jet distances at which the two

jets were identi�ed as one jet by the experimental splitting/merging algorithm. The

value of Rsep was also determined by parameterizing the jet shapes measured in D� as

a function of the jet transverse energy and determining analytically the jet distance at

which two jets are identi�ed as one jet. We conclude that the value Rsep = 1:3 reects

the D� merging/splitting criteria the best. We adopt this value as the standard to

be used in all NLO theoretical predictions using the Snowmass jet algorithm. The jet

inclusive cross section has been calculated in next-to-leading perturbative QCD as a

function of Rsep. The variation in the theoretical prediction is presented in the last

section of the document.
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1 Introduction

For QCD comparisons, quantitative jet analyses depend on the de�nition of a jet both experi-
mentally and theoretically. For the purpose of this document, theory refers to next-to-leading
(NLO) perturbative calculations and experiment refers to calorimeter level jet reconstruc-
tion. At the NLO parton level, the jet can consist of at most two partons, whereas in the
experiment a jet consists of the energy deposits of particles in the calorimeter. Traditionally,
a jet is de�ned with a �xed cone size which is de�ned in �; � space where � is the azimuthal
angle, � = � ln(tan �=2) is the pseudorapidity and � is the angle with respect to the beam.
The cone size is de�ned as R =

p
�2�+�2�, where ��;�� are the distances in �; � space.

Typically the cone is chosen as R = 0:7 for several reasons:

� A cone of size 0.7 empirically contains most of the energy of a jet and has the best jet
energy resolution.

� NLO order predictions are most stable and do not depend strongly on renormalization
and factorization scale at this cone size. [1]

� It is a standard size used by many experiments at present energies.

This document begins by describing the jet clustering algorithm used in NLO theo-
retical calculations. Next, it describes the jet clustering algorithm used by D�. Because the
jet clustering algorithm at NLO and D� di�er in their treatment of overlapping jets, quan-
titative comparisons to theoretical predictions are di�cult. We therefore use a parameter,
Rsep, which limits the maximum distance allowed between two partons at NLO. The value of
Rsep depends upon the experimental treatment of overlapping jets, so we have measured Rsep

for the D� jet clustering algorithm. Two di�erent techniques to obtain Rsep are presented
as a function of jet ET , � and cone size. The note concludes with the e�ects of di�erent
choices of Rsep on the jet inclusive cross section and a recommendation for the Rsep value
which should be used when comparing NLO theoretical predictions to D� data.

2 Jet de�nitions

Intuitively the use of a �xed cone is rather simple and straightforward. The same cone size is
applied at the theory and experimental level. However, in practice it is impossible to apply
exactly the same algorithm at NLO and at the calorimeter level. Some of these di�erences
are simply conventions, while others are caused by experimental procedures. In the next
sections we will describe the jet de�nitions used by both theory and the D� experiment.

2.1 Jets at NLO QCD and the Snowmass Accord

To make the application of the jet clustering algorithm more uniform, several theorists and
experimentalists agreed on the so called Snowmass Accord [2]. This accord speci�es which
partons should be clustered to form a jet at the theory level. The accord does not give
clear instructions for the treatment of jets experimentally, so experimentalists have modi�ed
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Jet definition in NLO 
as used in D0 up to now

Jet definition in NLO according
 to Snowmass

Jet definition in NLO according 
to modified Snowmass with Rsep.

Parton -1- and -2- are combined 
into jet -J-, if the parton distance to 
the jet axis is less than R. The jet 
axis is defined by partons 1 and 2, 
according to the Snowmass 
definition.

Parton 1 and 2 are clustered into a 
jet if their distance is less than R 
i.e. distance of parton 2 to the 
leading Et parton is less than R.

Use the standard Snowmass 
clustering, but in addition 
require the distance between the 
two partons to be less than 
Rsep.

(a) (b) (c)

Figure 1: Illustration and description of the jet de�nitions at NLO parton level as used by
the D� experiment

the parton level algorithm for application in actual events. The Snowmass de�nition for jet
direction (�; �) and transverse energy (ET ) are speci�ed as follows:

�jet =
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Here i runs over all clusters in the jet. The clustering algorithm at the NLO parton level is
illustrated in Fig. 1a. For a pair of partons, the jet direction is determined using Eq. 1. If a
parton is within a distance R from the reconstructed jet axis, it belongs to the jet. Here R
is the chosen jet cone size and the total width of the jet cone is 2R. At this level, splitting
and merging of overlapping jets is not an issue since there are too few partons for splitting
or merging to occur.

2.2 Experimental jet de�nitions.

At the calorimeter level in the D� experiment, jets are de�ned in two steps. In the �rst or
clustering step, all the energy that belongs to a jet is accumulated and in the second step
the �; � and ET of the jet are de�ned. The clustering consists of the following steps:

1) Calorimeter towers (����� = 0:1� 0:1) with ET > 1 GeV are enumerated. Starting
with the highest ET tower, preclusters are formed using a nearest neighbor algorithm
around these seed towers. Only preclusters with ET > 1 GeV are used to reduce the
possible number of starting points for the jet algorithm.

2) The jet direction (�,�) is calculated using Eq. 1 from the energy deposit pattern in a
�xed cone of size R (here R is the size of the �nal cone size used) around the precluster
center.
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3) Accumulate the energy in a cone of size R around the jet and redetermine �; �.

4) Iterate steps 2 and 3 until the jet direction is stable. This is typically achieved in two
or three iterations.

5) Retain only those jets with ET > 8 GeV.

The issues of merging and splitting of jets will be discussed later. Up to this point
(clustering) everything is identical to the Snowmass accord. All energy within a distance R
from the jet axis has been collected. For D� analyses published before 1996, the �nal � and
� of the jet di�er from the Snowmass accord. The jet direction was de�ned as:

�jet = tan�1(

q
(
P

i E
i
x)

2 + (
P

i E
i
y)

2

P
iE

i
z

)

�jet = tan�1(

P
i E

i
yP

iE
i
x

) (2)

�jet = � ln(tan(�jet=2))

where
Ex = Ei sin(�i) cos(�i) ; Ey = Ei sin(�i) sin(�i) ; Ez = Ei cos(�i)

The sum over i is over all towers that are within the jet radius R.
This de�nition di�ers from the Snowmass convention in the variables �jet and �jet as a

result of early D� Monte Carlo [3] studies. Using jets de�ned at the parton shower, particle
and calorimeter tower level, Eq. 2 was found to give slightly better agreement between
the three levels, especially in the forward rapidity regions. The de�nition of the transverse
energy is identical to the Snowmass accord.

After publication of the measured transverse energy pro�les [4] in jets, the D� jet
direction de�nitions were shown to cause problems at the NLO parton level, especially in the
forward region. The problems at NLO arose due to an inconsistency between the de�nition
of ET shown in Equation 1 and the de�nition of � shown in Equation 2. The comparisons
at the NLO parton level were done [5] by determining the jet direction with three di�erent
methods:

� Addition of the partons as four vectors

� Snowmass, Eq. 1

� D� de�nitions, Eq. 2.

If four-vector addition of the partons is used as the jet �nding procedure, it was shown that
the Snowmass reconstruction is less biased than the D� direction de�nitions. Based on the
di�culty at NLO [5], D� has adopted the standard Snowmass de�nitions. Studies have
shown this change has little e�ect at the experimental level [4, 6]:

If experimental jets are reconstructed with either de�nition (Eq. 1 or Eq. 2), no sig-
ni�cant systematic shift between the resulting directions is observed. The largest di�erence
seen is a shift of � 0:05 in � at high �. The same holds for jets reconstructed from HERWIG
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[7] parton showers or reconstructed from the HERWIG particle level. A di�erence in the
direction only occurs at the NLO parton level.

It should be noted that after the jet has been clustered the variables Ex; Ey and Ez

measured from the jet energy depositions are available for analysis. However, if Ex; Ey; and
Ez are now recalculated from �; � and ET determined from Snowmass they will not agree
with the measured Ex; Ey; and Ez. A comparison of the \old" and \new" jet directions is
given in Appendix A.

2.3 D� Theoretical Jet De�nition

For theoretical predictions, in the past D� had used an algorithm which requires the two
partons forming a jet to be within a distance R of each other. This was done because the
seed tower required in the D� experimental jet algorithm was thought of as a seed parton at
the parton level. In this case the other parton has to be within R of the seed parton. This
is illustrated in Fig. 1b. However we believe that this picture is incorrect. The seed tower
used in the D� experimental algorithm is simply a convenient and fast way to start the
algorithm. The seed tower should not be thought of as the seed parton. We conclude that
these theory predictions should not be used further. Only a modi�ed Snowmass algorithm,
which accounts for parton proximity, should be used for theory comparisons. As will be
shown, this new algorithm attempts to deal with merging/splitting of jets at the parton
level.

2.4 The modi�ed Snowmass jet de�nition with Rsep

In the Snowmass algorithm as described above and in Fig. 1, the partons contributing to a jet
can have a maximum separation of 2R. Consider a two parton �nal state, with the partons
separated by 2R. The experimentally observed energy pattern will be determined by these
two partons generating a parton shower, followed by a hadronization process and subsequent
shower widening in the calorimeter. After applying the experimental jet algorithm to this
object it is not clear how this state will be described with a �xed cone algorithm with cone
R. Depending on the splitting and merging criteria used, such a parton con�guration can
be classi�ed as one or two jets in the experiment.

This example illustrates the di�erent treatment of jets at the parton and calorimeter
level. Experimentally one makes a decision whether two jets are combined into one jet or
kept as two di�erent jets based on di�erent criteria than at the parton level. Again, the
Snowmass accord gives a prescription for this procedure, but it is not unique and is not
always followed. To accommodate the di�erences between the jet de�nition at the parton
and calorimeter level, an additional, purely phenomenological, parameter has been suggested
by S. Ellis [1]. The variable is called Rsep and is the maximum allowed distance (�R) between
two partons in a parton jet, divided by the cone size used: Rsep = �R=R. This is illustrated
in Fig. 1c and this algorithm will be referred to as the modi�ed Snowmass algorithm.

The value of Rsep depends on details of the jet algorithm used in each experiment.
Although the variable can depend on many subtle details, we expect that its value is mostly
determined by the exact splitting and merging criteria used. In D� we use the following
splitting and merging algorithm: Two jets are merged into one jet if more than 50% of the
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ET of the jet with the smaller ET is contained in the overlap region. The direction of the new

jet is de�ned from the two original jets using Eq.2. If less than 50% of the ET is contained in

the overlap region, the jets are split into two distinct jets and the energy of each calorimeter

cell in the overlap region is assigned to the nearest jet and the jet directions are recalculated.

At the parton level Rsep is the distance between two partons where we switch from
a one jet to a two jet �nal state, even though both partons are contained within the jet
de�ning cone. So for distances less than Rsep the two partons correspond to one jet and for
distances larger than Rsep we have two jets. The value of Rsep is not known a priori, but it
can be used to transfer the experimental splitting/merging scheme to the parton level.

The determination of Rsep would ideally be as follows: generate the two parton �nal
state, apply the full showering ( parton + hadronization), simulate the calorimeter response,
and �nally apply the experimental jet algorithm. As Rsep is increased at the parton level, we
will observe a transition from one jet to two jet events in the simulation. The point at which
this transition occurs is the value of Rsep. Although this method is possible, using NLO
\partons" as input to shower generators is not totally without conceptual problems. Rather,
we take experimentally measured jets from di�erent events at di�erent locations in the
calorimeter and overlap them for di�erent distances �R between the jet axes. Consequently
the energy depositions of the two events are added together and the jet algorithm is run
on the new arti�cial event. The value of �R where the event con�guration switches from
two jets to one jet allows a measurement of Rsep. This procedure has been performed with
experimentally measured jets and in a more analytical way by using the jetshapes measured
by D� [4].

3 Determination of Rsep in D�

3.1 Rsep from data

Two partons are merged into a single jet if they are within Rsep� (jet radius) of each other.
If we assume that the jet location and energy describe those of its parent parton, we can
replace the partons with jets. In this analysis a single jet from an event was overlapped onto
another independent event. The single jet chosen to be placed into a di�erent event was the
�rst jet reconstructed with ET greater than 20 GeV and which passed all of the standard
jet quality cuts [8]. Jets which had undergone splitting or merging were not included in
the sample to assure the parton-jet equivalence. The next event was chosen as the event in
which the single jet would be placed. All jets in this event were required to have ET � 20
GeV to keep the reconstruction e�ciency high. The number of jets was also required to be
greater than 1 and less than 6. All of the cells within the input jet were placed into the
modi�ed event and the event was re-reconstructed.

Rsep can be measured by plotting the di�erence in the number of jets before and after
placement of the input jet vs the distance between the input jet and the closest jet in the
modi�ed event (�R). The value of �R at which half of the events contain an additional jet
(�R1=2) was chosen as the point in which to calculate Rsep. Rsep=�R1=2/(Jet Radius).

Figure 2 shows the number of jets reconstructed from the nearest jet and the input
jet vs �R. One can see that if the input jet is very close to another jet, only one jet is
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Figure 2: The number of reconstructed jets vs �R for a cone of radius 0.7. The input jet
has ET � 20 and j�j � 4.0.

Figure 3: The number of reconstructed jets vs �R for a cone of radius 0.7. The input jet
has ET � 40 and j�j � 4.0.
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Figure 4: The number of reconstructed jets vs �R for a cone of radius 0.7. The input jet
has ET � 40 and j�j � 4.0.

Figure 5: The number of reconstructed jets vs �R for a cone of radius 0.7. The input jet
has ET � 20 and j�j � 1.0.
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Figure 6: The number of reconstructed jets vs �R for a cone of radius 0.7. The input jet
has ET � 20 and j�j � 1.0.

reconstructed. If the input jet is far from other jets, two jets are reconstructed. In the
region 0.8 � �R � 1.0, one or two jets can be reconstructed. Choosing the point at which
half of the events have two reconstructed jets, yields a �R1=2 of 0.85. This value of �R1=2

gives an Rsep of 1.2 for a cone radius of R=0.7.
To see the e�ects of the input jet's ET and � on the value of Rsep, four di�erent regions

were examined. Figures 3 - 6 show the transition for di�erent input ET and � regions. There
is little dependence in Rsep for either ET and �. To see the e�ects of a di�erent cone size,
the same procedure was performed on jets with cone size of 0.5. Figure 7 shows the e�ect on
Rsep for a cone radius of 0.5. The point where half of the events contain two jets corresponds
to a �R of 0.6, again yielding a value of Rsep = 1:2. For all of the previous plots, the
event in which the input jet was placed could contain merged or split jets. To see the e�ects
of merging and splitting on these jets, the analysis was repeated, but this time allowing no
merged or split jets in the input event. After the input jet was placed in the event and
re-reconstructed, merged and split jets were allowed. Figures 8 - 10 show the e�ects of not
allowing merging and splitting on the value of Rsep for 3 di�erent cone sizes. There is little
e�ect due to merging and splitting, again all cone sizes yield values of Rsep � 1:2. The e�ects
of the ET of the input jet on Rsep are small. However, the e�ects may be diminished since
the ET of the nearest jet was not constrained. Figures 11 - 12 show the e�ects on Rsep when
ET cuts are placed on both jets. Again there is little e�ect on Rsep.

From this study of overlapping jets from di�erent data events, we conclude that Rsep

is nearly independent of jet conesize and not strongly dependent on the ET of the jets. A
value of Rsep=1.2 is the best value from this analysis.
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Figure 7: The number of reconstructed jets vs �R for a cone of radius 0.5. The input jet
has ET � 20 and j�j � 4.0.

Figure 8: The number of reconstructed jets vs �R for a cone of radius 0.7. The input jet
has ET � 20 and j�j � 4.0. No merged or split jets in the input event.
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Figure 9: The number of reconstructed jets vs �R for a cone of radius 0.5. The input jet
has ET � 20 and j�j � 4.0. No merged or split jets in the input event.

Figure 10: The number of reconstructed jets vs �R for a cone of radius 0.3. The input jet
has ET � 20 and j�j � 4.0. No merged or split jets in the input event.
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Figure 11: The number of reconstructed jets vs �R for a cone of radius 0.7. The input jet
and the nearest jet have ET � 40 and j�j � 4.0. No merged or split jets in the input event.

Figure 12: The number of reconstructed jets vs �R for a cone of radius 0.7. The input jet
and the nearest jet have ET � 40 and j�j � 4.0. No merged or split jets in the input event.
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Figure 13: Fits to the D� jet shapes as described by Equation 5 at the four ET points.

3.2 Rsep from the measured jet shapes.

In a recent publication [4], D� has published the integrated transverse energy pro�le of
jets for several ET 's and pseudorapidities. Assuming that Rsep is mostly determined by the
splitting and merging criteria, it should be possible to determineRsep from the parameterized
jet shapes as two jets approach each other.

3.2.1 Outline of the method.

Assume two jets de�ned by a cone size R with transverse energies ET1 and ET2 are a distance
�R apart, where �R is the distance between jet axes. For �R � 2R there is no overlap
between the jets. As �R decreases and becomes < 2R, the jets start overlapping. Using the
convention that ET2 � ET1, in D� the two jets will be merged if the transverse energy in
the overlap region of the two jets is � 0:5�ET2. This will occur at a particular value of �R
and this value is related to Rsep = �R=R. So at this point the two jets will be treated as
one jet ( as �R decreases). The value of Rsep obviously can depend on several quantities:

� The values of ET1 and ET2
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� The jetshape or transverse energy pro�le of the jets

� The cone size.

To study these possible dependencies it is necessary to parameterize the transverse
energy pro�les of jets as a function of the distance r from the jet axis and the ET of the
jet. Given this, we can then determine Rsep for all possible ET1; ET2 combinations and cone
sizes.

3.2.2 Parameterization of the D� jetshapes.

The normalized integral jetshapes as published in [4] were �tted in the central pseudorapidity
region only. The jet shape, �(r), is de�ned as the average fraction of calorimeter cell ET in
a subcone of radius r:

�(r) =
1

Njets

X
jets

ET (r)

ET (r = 1)
; (3)

where Njets is the number of jets in the sample. A calorimeter cell was considered to be
within a subcone if the center of the cell was located within the subcone boundary. The jet
shapes measure the integrated transverse energy in subcones extending from 0 to r. Given
the transverse energy density in the cone as �(r), then:

�(r) =

R r
0
�(r0)dr0R

1

0
�(r0)dr0

(4)

By de�nition, �(1) = 1. We have �tted the measured data to the following expression:

�(r) = Ar0:1 +Br0:3 + Cr0:5 +Dr0:7 + Er0:9 (5)

with

A(ET ) = �3:47 + 0:85� 10�2ET � 0:25� 10�4E2

T

D(ET ) = 3:30 � 0:77 � 10�2ET + 0:22� 10�4E2

T (6)

B = 9:75 ; C = �8:32 ; E = �0:30

The ET dependence of the jetshape is completely described by the energy dependence of the
parameters A and D. The data used for �tting the above parameters are shown in Fig. 13.
The jet shapes were measured at average transverse energies 53 (45-70), 81 (70-105), 118
(105-140), 166 (>140) GeV, where the numbers in parentheses indicate the ET range used.
Overlaid on the �gure is the parameterization given by Eq. 5 and 6. The parameterization
describes the experimental data very well ( no surprise given 5 parameters and 10 data points
at each energy point). The ET dependence of the parameters A and D was obtained from
the �ts to the jet shapes at the di�erent ET points and is displayed in Fig. 14. These points
were then �t to get the functional form of the ET dependence as given in Eq.6. It should
be noted that this form is used to obtain the jet shapes at transverse energies where it has
not been measured yet ( i.e. below 50 GeV and above 170 GeV). The extrapolation to lower
transverse energies seems �ne, but at large transverse energies it fails. The jetshape for ET >

170 GeV remains the same as at 170 GeV.
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Figure 14: Fits to the ET dependence of the parameters A and D as given by Equation 6.

3.2.3 Results on Rsep from jet shapes

Given these parameterizations of the jet shapes (for a jet de�ned using a cone size=1.0), we
can parameterize the energy in the overlap region of two jets as a function of their distance
�R. This can be done for di�erent combinations of ET1 and ET2, as well as for di�erent
choices of cone sizes. In addition to this, we can �x the jet shape at a particular ET , but
give the jet a di�erent transverse energy (i.e. an ET = 20 GeV jet can have the jetshape of
a 50 GeV jet). The following nomenclature has been used for the Rsep variable:

� Runi
sep is Rsep determined assuming that the transverse energy per unit area is indepen-

dent of the distance from the jet axis i.e. it is uniform within the cone.

� Rfix
sep is Rsep determined assuming that the jetshape of all jets at all transverse energies

are the same as the jetshape of a jet of ET = 50 GeV.

� Rshape
sep is Rsep determined using the parameterized jetshape as given by Eqs. 5 and 6

at each ET . This is the most interesting quantity.

Table 1 displays the values of Rsep for 30 < ET1 < 200 GeV, for a variety of ET2

values. The range of ET1 was chosen such that the jet shapes are reliable and we do not
extrapolate too far into unmeasured regions. The resulting values for Rsep are remarkably
insensitive to most changes. They do not depend very much on the cone size or the jet shape.
The variables Runi

sep ; R
fix
sep and R

shape
sep only di�er when ET2=ET1 is very small. Comparing Runi

sep ,
Rfix

sep and Rshape
sep , we observe that using the correct transverse energy dependence of the jet

shapes only makes a di�erence at small values of ET2=ET1.
The only variation that is observed is the decreasing of Rsep with increasing ET2=ET1.

This seems to make it impossible to use a single value for Rsep for all combinations. Figure 15
displays this graphically for a cone size of 0.7. Especially at low ET2=ET1 the value increases
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Table 1: The values of Rsep obtained from applying the D� merging/splitting algorithm to
parameterized jetshapes, for di�erent cone sizes and parton energies.

ET1 ET2 R Runi
sep Rfix

sep Rshape
sep R Runi

sep Rfix
sep Rshape

sep R Runi
sep Rfix

sep Rshape
sep

30. 10. 0.7 1.55 1.37 1.43 0.5 1.55 1.39 1.45 0.3 1.55 1.43 1.49
30. 15. 0.7 1.45 1.30 1.35 0.5 1.45 1.32 1.38 0.3 1.45 1.36 1.42
30. 20. 0.7 1.37 1.26 1.30 0.5 1.37 1.28 1.33 0.3 1.37 1.32 1.37
30. 25. 0.7 1.32 1.23 1.27 0.5 1.32 1.25 1.29 0.3 1.32 1.29 1.33
30. 30. 0.7 1.27 1.21 1.24 0.5 1.27 1.23 1.26 0.3 1.27 1.26 1.30
40. 10. 0.7 1.61 1.42 1.46 0.5 1.61 1.45 1.48 0.3 1.61 1.49 1.52
40. 20. 0.7 1.45 1.30 1.34 0.5 1.45 1.32 1.36 0.3 1.45 1.36 1.40
40. 30. 0.7 1.34 1.24 1.27 0.5 1.34 1.26 1.29 0.3 1.34 1.30 1.33
40. 40. 0.7 1.27 1.21 1.22 0.5 1.27 1.23 1.25 0.3 1.27 1.26 1.28
50. 10. 0.7 1.66 1.47 1.48 0.5 1.66 1.49 1.51 0.3 1.66 1.53 1.54
50. 20. 0.7 1.50 1.34 1.36 0.5 1.50 1.36 1.38 0.3 1.50 1.40 1.42
50. 30. 0.7 1.40 1.27 1.29 0.5 1.40 1.30 1.31 0.3 1.40 1.33 1.35
50. 40. 0.7 1.33 1.23 1.24 0.5 1.33 1.26 1.26 0.3 1.33 1.29 1.30
50. 50. 0.7 1.27 1.21 1.21 0.5 1.27 1.23 1.23 0.3 1.27 1.26 1.26
80. 10. 0.7 1.74 1.56 1.53 0.5 1.74 1.58 1.55 0.3 1.74 1.61 1.59
80. 20. 0.7 1.61 1.42 1.40 0.5 1.61 1.45 1.43 0.3 1.61 1.49 1.47
80. 30. 0.7 1.52 1.35 1.33 0.5 1.52 1.37 1.35 0.3 1.52 1.41 1.39
80. 40. 0.7 1.45 1.30 1.28 0.5 1.45 1.32 1.30 0.3 1.45 1.36 1.34
80. 50. 0.7 1.39 1.27 1.24 0.5 1.39 1.29 1.27 0.3 1.39 1.33 1.30
80. 60. 0.7 1.34 1.24 1.22 0.5 1.34 1.26 1.24 0.3 1.34 1.30 1.27
80. 70. 0.7 1.30 1.22 1.19 0.5 1.30 1.24 1.21 0.3 1.30 1.28 1.25
80. 80. 0.7 1.27 1.21 1.17 0.5 1.27 1.23 1.20 0.3 1.27 1.26 1.23
100. 10. 0.7 1.77 1.60 1.54 0.5 1.77 1.62 1.57 0.3 1.77 1.65 1.62
100. 30. 0.7 1.57 1.39 1.34 0.5 1.57 1.41 1.37 0.3 1.57 1.45 1.42
100. 50. 0.7 1.45 1.30 1.26 0.5 1.45 1.32 1.29 0.3 1.45 1.36 1.33
100. 70. 0.7 1.36 1.25 1.21 0.5 1.36 1.27 1.23 0.3 1.36 1.31 1.27
100. 90. 0.7 1.30 1.22 1.17 0.5 1.30 1.24 1.19 0.3 1.30 1.28 1.23
150. 10. 0.7 1.82 1.67 1.57 0.5 1.82 1.69 1.62 0.3 1.82 1.72 1.67
150. 40. 0.7 1.60 1.41 1.32 0.5 1.60 1.43 1.37 0.3 1.60 1.47 1.42
150. 70. 0.7 1.47 1.31 1.24 0.5 1.47 1.34 1.27 0.3 1.47 1.37 1.32
150. 100. 0.7 1.37 1.26 1.18 0.5 1.37 1.28 1.21 0.3 1.37 1.32 1.26
150. 130. 0.7 1.31 1.22 1.15 0.5 1.31 1.25 1.18 0.3 1.31 1.28 1.22
200. 20. 0.7 1.77 1.60 1.49 0.5 1.77 1.62 1.54 0.3 1.77 1.65 1.60
200. 60. 0.7 1.57 1.39 1.30 0.5 1.57 1.41 1.34 0.3 1.57 1.45 1.39
200. 100. 0.7 1.45 1.30 1.22 0.5 1.45 1.32 1.25 0.3 1.45 1.36 1.30
200. 140. 0.7 1.36 1.25 1.17 0.5 1.36 1.27 1.20 0.3 1.36 1.31 1.25
200. 180. 0.7 1.30 1.22 1.14 0.5 1.30 1.24 1.17 0.3 1.30 1.28 1.22
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Figure 15: The value of Rsep as a function of the parton transverse energies ET1; ET2. Shown
are the maximum values allowed by the Snowmass algorithm ( solid line) and the experi-
mental splitting and merging algorithm( symbols). The results shown are for R=0.7.
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rapidly. However, such large values of Rsep are not allowed by the Snowmass algorithm itself.
This is discussed in the next section.

3.3 Limits on values of Rsep from the algorithm.

Rsep has been introduced as a phenomenological parameter at the parton level that can be
adjusted to accommodate di�erent merging and splitting algorithms. However the distance
between two partons that are combined into a jet using the Snowmass de�nitions is limited
and can not always be 2R. Depending on the transverse energies of the partons involved
the distance is much smaller than 2R. So some of the ET1 and ET2 combinations in Table
1 are unphysical and not allowed. To determine the maximum distance allowed between
two partons in the Snowmass algorithm, consider two partons with: ET1; ET2; �1; �2 and
�1 = �2 = 0. If we introduce f = ET2=ET1 the jet pseudorapidity is given by:

�jet =
ET1�1 + ET2�2

ET1 + ET2

=
�1 + f�2

1 + f

�jet(1 + f) = �1 + f�2 (7)

We assume for simplicity that ET2 < ET1 and that �1; �2 > 0 and that �2 > �1. This
implies that �jet > 0 and is between �1 and �2. It also makes it somewhat easier to calculate
the maximum distance between the partons if they form a jet. The criteria for them to be
combined into a jet are:

�jet � �1 � R and �2 � �jet � R (8)

(9)

The distance (�R) between the two partons is:

�R = �2 � �1 = �2 � (1 + f)�jet + f�2

�R = (1 + f)(�2 � �jet) � (1 + f)R (10)

The maximum distance between the two partons increases linearly with f which results in:

Rsep = �R=R � 1 + f: (11)

So the limits are Rsep = 1 in the case that ET2 ! 0 and Rsep = 2 in the case ET2 ! ET1.
The large values obtained for Rsep in Table 1 at very low values of ET2=ET1 can be

ignored if they do not satisfy the condition Rsep � 1+ f , because the algorithm would never
allow such large distances between two partons. To reect this additional constraint on Rsep,
Table 2 displays the smallest value of Rsep, resulting either from the merging and splitting
algorithm or Eq. 11. To indicate where the limit comes from, the value for Rsep is negative
if is determined by Eq. 11.

Graphically this is presented in Figure 15. The solid line in this �gure shows the
maximum value allowed for Rsep by Eq. 11 as a function of ET2=ET1. The symbols show the
maximum value of Rsep as obtained by applying the D� splitting/merging criteria to partons
and given in Table 1. The plotted symbols are obtained by using the measured jetshapes for
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Figure 16: The value of Rsep as a function of the parton transverse energies ET1; ET2. Shown
are the maximum values allowed by the Snowmass algorithm ( solid line) and the experi-
mental splitting and merging algorithm( symbols). The results shown are for R=0.5.

both partons i.e. Rshape
sep in Table 1 and a nominal cone size of R=0.7. The value obtained

for Rsep shows a slight dependence on the ET1, which is caused by the dependence of the
jetshape on the jet transverse energy. All these results are for centrally produced jets. The
results for the other cone sizes, 0.5 and 0.3, are shown in Figures 16 and 17

4 Theoretical predictions with di�erent Rsep.

We have generated distributions of the inclusive jet cross section (d�2=dETd�) for di�erent
Rsep values using the program JETRAD [9]. The parton distributions(pdf) CTEQ2M [10] was
used and � = ET was chosen for the renormalization/factorization scale. The distributions
are plotted as a function of theET of the jets when such jets are in a �xed j�j range. The range
is from j�j = 0:0 to j�j = 4:0 in increments of 0:5, in other words, we have ET distributions
for 0:0 � j�j < 0:5, 0:5 � j�j < 1:0, 1:0 � j�j < 1:5, 1:5 � j�j < 2:0, 2:0 � j�j < 2:5,
2:5 � j�j < 3:0, 3:0 � j�j < 3:5, and 3:5 � j�j < 4:0. The Rsep values used are: 1.0, 1.1, 1.2,
1.3, 1.4, 1.5, 1.6, and 2.0. Note that Rsep=2.0 corresponds to the standard Snowmass case
while Rsep=1.0 corresponds to the D� algorithm ( see section 2.3).

In order to understand the di�erences due to the Rsep value, we have taken a ratio
of the ET distributions from di�erent Rsep values. Figures 18 and 19 show the ratio plots
for Rsep=1.3 versus Rsep=2.0. The ratio has been �tted to a straight line and the results are
shown in Table 3.

As we can see, a straight line is a good model of the ratios between the cross sections
at these two Rsep values. In particular, for the case of 0:0 � j�j < 0:5, the cross section
with Rsep=1.3 is 4% lower than the cross section with Rsep=2.0 at ET = 20 GeV . At
ET = 500 GeV , the cross section with Rsep=1.3 is only 1:5% lower than the cross section

20



Table 2: Same results as Table I, but with the with the Snowmass implicit distance constraint
implied by negation.

ET1 ET2 R Runi
sep Rfix

sep Rshape
sep R Runi

sep Rfix
sep Rshape

sep R Runi
sep Rfix

sep Rshape
sep

30. 10. 0.7 -1.33 -1.33 -1.33 0.5 -1.33 -1.33 -1.33 0.3 -1.33 -1.33 -1.33
30. 15. 0.7 1.45 1.30 1.35 0.5 1.45 1.32 1.38 0.3 1.45 1.36 1.42
30. 20. 0.7 1.37 1.26 1.30 0.5 1.37 1.28 1.33 0.3 1.37 1.32 1.37
30. 25. 0.7 1.32 1.23 1.27 0.5 1.32 1.25 1.29 0.3 1.32 1.29 1.33
30. 30. 0.7 1.27 1.21 1.24 0.5 1.27 1.23 1.26 0.3 1.27 1.26 1.30
40. 10. 0.7 -1.25 -1.25 -1.25 0.5 -1.25 -1.25 -1.25 0.3 -1.25 -1.25 -1.25
40. 20. 0.7 1.45 1.30 1.34 0.5 1.45 1.32 1.36 0.3 1.45 1.36 1.40
40. 30. 0.7 1.34 1.24 1.27 0.5 1.34 1.26 1.29 0.3 1.34 1.30 1.33
40. 40. 0.7 1.27 1.21 1.22 0.5 1.27 1.23 1.25 0.3 1.27 1.26 1.28
50. 10. 0.7 -1.20 -1.20 -1.20 0.5 -1.20 -1.20 -1.20 0.3 -1.20 -1.20 -1.20
50. 20. 0.7 -1.40 1.34 1.36 0.5 -1.40 1.36 1.38 0.3 -1.40 1.40 -1.40
50. 30. 0.7 1.40 1.27 1.29 0.5 1.40 1.30 1.31 0.3 1.40 1.33 1.35
50. 40. 0.7 1.33 1.23 1.24 0.5 1.33 1.26 1.26 0.3 1.33 1.29 1.30
50. 50. 0.7 1.27 1.21 1.21 0.5 1.27 1.23 1.23 0.3 1.27 1.26 1.26
80. 10. 0.7 -1.13 -1.13 -1.13 0.5 -1.13 -1.13 -1.13 0.3 -1.13 -1.13 -1.13
80. 20. 0.7 -1.25 -1.25 -1.25 0.5 -1.25 -1.25 -1.25 0.3 -1.25 -1.25 -1.25
80. 30. 0.7 -1.38 1.35 1.33 0.5 -1.38 1.37 1.35 0.3 -1.38 -1.38 -1.38
80. 40. 0.7 1.45 1.30 1.28 0.5 1.45 1.32 1.30 0.3 1.45 1.36 1.34
80. 50. 0.7 1.39 1.27 1.24 0.5 1.39 1.29 1.27 0.3 1.39 1.33 1.30
80. 60. 0.7 1.34 1.24 1.22 0.5 1.34 1.26 1.24 0.3 1.34 1.30 1.27
80. 70. 0.7 1.30 1.22 1.19 0.5 1.30 1.24 1.21 0.3 1.30 1.28 1.25
80. 80. 0.7 1.27 1.21 1.17 0.5 1.27 1.23 1.20 0.3 1.27 1.26 1.23
100. 10. 0.7 -1.10 -1.10 -1.10 0.5 -1.10 -1.10 -1.10 0.3 -1.10 -1.10 -1.10
100. 30. 0.7 -1.30 -1.30 -1.30 0.5 -1.30 -1.30 -1.30 0.3 -1.30 -1.30 -1.30
100. 50. 0.7 1.45 1.30 1.26 0.5 1.45 1.32 1.29 0.3 1.45 1.36 1.33
100. 70. 0.7 1.36 1.25 1.21 0.5 1.36 1.27 1.23 0.3 1.36 1.31 1.27
100. 90. 0.7 1.30 1.22 1.17 0.5 1.30 1.24 1.19 0.3 1.30 1.28 1.23
150. 10. 0.7 -1.07 -1.07 -1.07 0.5 -1.07 -1.07 -1.07 0.3 -1.07 -1.07 -1.07
150. 40. 0.7 -1.27 -1.27 -1.27 0.5 -1.27 -1.27 -1.27 0.3 -1.27 -1.27 -1.27
150. 70. 0.7 1.47 1.31 1.24 0.5 1.47 1.34 1.27 0.3 1.47 1.37 1.32
150. 100. 0.7 1.37 1.26 1.18 0.5 1.37 1.28 1.21 0.3 1.37 1.32 1.26
150. 130. 0.7 1.31 1.22 1.15 0.5 1.31 1.25 1.18 0.3 1.31 1.28 1.22
200. 20. 0.7 -1.10 -1.10 -1.10 0.5 -1.10 -1.10 -1.10 0.3 -1.10 -1.10 -1.10
200. 60. 0.7 -1.30 -1.30 1.30 0.5 -1.30 -1.30 -1.30 0.3 -1.30 -1.30 -1.30
200. 100. 0.7 1.45 1.30 1.22 0.5 1.45 1.32 1.25 0.3 1.45 1.36 1.30
200. 140. 0.7 1.36 1.25 1.17 0.5 1.36 1.27 1.20 0.3 1.36 1.31 1.25
200. 180. 0.7 1.30 1.22 1.14 0.5 1.30 1.24 1.17 0.3 1.30 1.28 1.22
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Figure 17: The value of Rsep as a function of the parton transverse energies ET1; ET2. Shown
are the maximum values allowed by the Snowmass algorithm ( solid line) and the experi-
mental splitting and merging algorithm( symbols). The results shown are for R=0.3.

j�j range Intercept Slope �2=ndf

0:0� 0:5 0.96 0.50E-4 39.9/47
0:5� 1:0 0.96 0.54E-4 39.6/42
1:0� 1:5 0.96 0.68E-4 26.4/32
1:5� 2:0 0.95 0.17E-3 7.6/22
2:0� 2:5 0.95 0.24E-3 17.5/17
2:5� 3:0 0.94 0.30E-3 6.3/10
3:0� 3:5 0.96 -0.32E-3 5.9/6
3:5� 4:0 0.93 0.91E-3 1.0/2

Table 3: Outcome of �tting the Rsep=1.3/Rsep=2.0 ratio to a straight line. The �rst column
indicates the j�j range. The second and third column shows the intercept and slope of the
�t respectively. The last column shows the goodness of the �t.
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Figure 18: Ratio of Rsep=1.3/Rsep=2.0 cross sections for the four central j�j slices.
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Figure 19: Ratio of Rsep=1.3/Rsep=2.0 cross sections for the four forward j�j slices.
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j�j range Intercept �2=ndf

0:0 � 0:5 0.99 47.5/48
0:5 � 1:0 0.99 29.8/43
1:0 � 1:5 0.99 33.7/33
1:5 � 2:0 0.98 16.6/23
2:0 � 2:5 0.98 14.7/18
2:5 � 3:0 0.99 11.9/11
3:0 � 3:5 0.98 6.7/6
3:5 � 4:0 0.98 1.7/3

Table 4: Outcome of �tting the Rsep=1.2/Rsep=1.3 ratio to a straight horizontal line. The
�rst column indicates the j�j range. The second column shows the intercept of the �t and
the last column shows the goodness of the �t.

with Rsep=2.0.
We also perform �ts to the ratio of cross sections for Rsep=1.2 versus Rsep=1.3 from

Figs. 20 and 21 and the results are described in Table 4. In this case, it was su�cient to
�t the ratio to a straight horizontal line and it shows that there is at most a 2% di�erence
between Rsep=1.2 and Rsep=1.3.

5 Conclusions

Values of Rsep > 1:7 in Figure 15 are rather rare because they require ET2=ET1 > 0:7, which
is kinematically unlikely. The more favored con�guration of two partons is one with small
ET2=ET1, which implies small values of Rsep. So we expect that NLO predictions are rather
insensitive to choices of Rsep between 1.2 and 2.0 (because few combinations originate from
this region), but become very dependent on it for smaller values. Considering the region
allowed by the Snowmass algorithm it is obvious that the experimental merging/splitting
algorithm limits Rsep to 1.2 to 1.4 for the jet transverse energies considered ( 30 < ET1 < 200
GeV). This result is to be compared with Rsep=1.2 which we obtained from overlaying real
experimental jets ( see section 3.1). The experimental overlapping of jets was done at rather
low transverse energies and typically the transverse energies of the two jets were close i.e
ET2=ET1 � 0:8 to 1. In this region the results obtained from the jetshapes (section 3.2.3)
also tend to be around 1.2 or lower. So we conclude that these methods agree.

Taking into account that large values of ET2=ET1 are unlikely and that we prefer to
choose one value for Rsep independent of jet transverse energies, we conclude that the most
reasonable value is Rsep = 1:3. This value is independent of the cone size used, as shown
in section 3.1. However the results derived from jetshapes and shown in Figures 16 and 17
indicate that one might use a larger value for Rsep.
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Figure 20: Ratio of Rsep=1.2/Rsep=1.3 cross sections for the four central j�j slices.
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Figure 21: Ratio of Rsep=1.2/Rsep=1.3 cross sections for the four forward j�j slices.
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A Appendix: D� jet de�nitions

The old way The new way

\D� de�nition" Snowmass de�nition

during clustering use: during clustering use:
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internally consistent inconsistent set

set of variables of variables

given ET ; �jet; �jet given ET ; �jet; �jet
can calculate Ex; Ey; Ez can calculate Ex; Ey ; Ez

and they agree with and they do not agree with

measured quantities measured quantities

Ex = ET cos�jet Ex � ET cos�jet

Ey = ET sin�jet Ey � ET sin�jet

Ez = ET sinh �jet Ez 6= ET sinh �jet
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